Minimally invasive implant placement without the use of biomaterials

The synergetic effect: L-PRF and OSSEAN implant surface
c.e. article

04 Minimally invasive implant placement without the use of biomaterials using the bone-expansion technique
 Gilles Chaumanet, DMD, MSc

case study

10 The synergetic effect: L-PRF and OSSEAN implant surface
 Robert J. Miller, MA, DDS, FACD

about the publisher

14 Imprint

on the cover

Cover image provided by Intra-Lock. To learn more about this technology, see page 10.
mySimplant® is why!

mySimplant is a digital treatment planning service for guided surgery that enables you to treat more patients with enhanced safety, and predictability. The user-friendly interface eliminates the need to acquire costly planning software or spend valuable hours learning how to master it.

Our Simplant technicians will prepare an implant planning proposal which you can review and approve on your own time. Digital flexibility is readily available, enabling you to deliver better, safer and faster implant treatment.

Go to mySimplant.com, check out the intuitive online system, and get started today!

www.dentsplysirona.com
Minimally invasive implant placement without the use of biomaterials using the bone-expansion technique

Author: Gilles Chaumanet, DMD, MSc

The success rate in implantology is close to 96 percent. Thanks to well-established implant placement protocols, with a few differences according to the implant system used, the predictability of the result under optimum tissue conditions is quite significant. It is very different when these conditions do not meet the recognized standards in terms of volume and quality for reproducibility in implantology. For example, thin ridges, which are frequent occurrences, will require a long and costly process for patients because they entail bone augmentation or possibly support tissue grafts.

Is there a minimally invasive alternative for these patients that allows them to be treated without these problems? One line of thinking is to stop the systematic practice of implantology as subtractive at the tissue level, but rather to transfer these volumes and thereby ensure a minimally invasive procedure. This implies reviewing all the biomechanical principles of implantology, not only in terms of the implant structure and design but also in relation to peri-implant tissue.

The general surgical principle of modern implantology since Brånemark has been bone preparation, called osteotomy, as close as possible to the dimensions of the implant that will be placed. This principle is still widely prevalent.

However, soft-tissue management has evolved, and the trend the past few years has been to manage soft tissue from the first surgical step. With the arrival of self-tapping conical implants, a new technique was developed that enables lateral as well as vertical bone compressing, condensing or expanding. Additionally, in 1994, Summers, practicing his crestal sinus lift technique with careful choice of conical taps, was the first to demonstrate the capacity of cancellous bone to be modeled (Fig. 1).

Through two clinical cases, we will see it is possible to be minimally invasive, precise and also avoid the use of biomaterials simply by exploiting the biomechanical properties of bone tissue and its capacity to regenerate. Respecting guided regeneration principles, which means the implementation of physical barriers to isolate the epithelial and connective tissue cells from the operating site, enables regeneration of the different tissues.

These principles are (Fig. 2):
- Primary closure of the surgical site to enable...
undisturbed and uninterrupted healing.

- Completion of the best possible angiogenesis to provide the required vascularisation and undifferentiated mesenchymal cells.
- Creation and maintenance of a space to facilitate bone formation inside this space.
- Stabilization of the surgical site to induce blood clot formation and facilitate healing.

Thanks to the careful choice of the healing screw or the implant abutment/temporary crown pair, these two entities with different regeneration potentials can be hermetically sealed, thereby avoiding cell competition, which we know contributes to the growth of epithelial cells that develop more rapidly.

Case No. 1

The patient presented with a fracture of #16 (Fig. 3) and periapical cysts. With the patient’s consent, the decision was made to perform an extraction, debridement, socket decontamination and immediate placement of a non-submerged implant (implant and healing screw) using Summers’ method (crestal sinus lift). The patient was on standard premedication with amoxicillin and corticosteroids. The #16 was carefully extracted by radicular separation to avoid bone fracture especially in the vestibule where
the cortical bone is very thin. The lamina dura, which enables the attachment of collagen and Sharpey's fibres, presents a high potential for contamination. Consequently, a light manual curettage of the socket was carried out, followed by a superficial debridement (vaporisation) of the entire "lamina dura" with an Erbium laser (2,870 nm) followed by decontamination with a diode laser (940 nm).

This was a flapless surgery. The expansion osteotomy was performed through the inter-radicular septum. It was initiated with a very thin manual bone tap (pointed), and then an automatic mechanical osteotome (Figs. 4, 5) (Osteo Safe® Anthogyr) was used. The use of convex inserts in the beginning enables lateral expansion of the native or healed bone, and then concave inserts during the breaking of the last sub-sinus millimeter enables lateral bone recovery of this bone socket while projecting it apically.

During sinus progression, PRF membranes (or native collagen membranes) are placed in the osteotomy opening to fill the intra-sinus space that is thereby gained (they also provide protection of the sinus membrane).

The Erbium laser is again passed through the osteotomy socket to vaporize the bone debris and sludge along the walls of this osteotomy. The implant is placed according to the manufacturer's recommendations but with an even slightly higher torque if the titanium grade so allows. A healing screw that fits the diameter and height of the residual gap to be closed is carefully chosen (Fig. 6).

If the healing screw does not enable primary closure of soft tissue, PRF membranes are used to fill the gap. If this gap is too big, a mucoperiosteal detachment of 6-10 mm and then a horizontal incision of the peristium of 6-8 mm are made. This technique serves to pull the gum around the healing screw by maintaining it with two sutures. The control X-rays clearly showed good osseointegration of the implant, significant filling and regeneration in only three months, and then perfect filling and regeneration four months after surgery.

The bone remodeling around and above the implant neck also seemed to be well executed. The cone-beam 3-D imaging in the first place showed a healthy sinus without inflammation or infection as well as bone remodelling at the apex and around the implant (Figs. 7, 8).

In the case of a trans-alveolar sinus lift combined with the placement of an implant by bone expansion, convex-tipped inserts should be used first to enable lateral expansion, and then concave inserts enable scraping of the bones of the lateral walls of the osteotomy to enable apical projection after breaking the...
last millimeter under the sinus floor. If a maxillary implant is to be placed completely in native bone, convex inserts suffice. The last insert that is placed is smaller in diameter than the implant that is chosen.

The advantage of this technique was noted starting in 1996 by Summers himself with the use of conical osteotomes as opposed to cylindrical osteotomes, which were all that were available up until then. The idea was actually to enable lateral peri-implant bone condensing in order to increase notably the primary stability and compensate for the lack of vertical dimension of the sub-sinus native bone.

The objective of this technique is to maintain, if possible, the entire maxillary bone by laterally pushing back the bone with minimal trauma while creating a precise osteotomy that breaks the last millimeter of the sinus floor while protecting the sinus membrane. The consequence is the notable increase in peri-implant bone density with a high elevation of BIC (bone implant contact) and, therefore, bone stability.

LCase No. 2

The patient presented with a fracture of #24 with significant periapical infection (Figs. 9, 10).

It was decided that an extraction would be performed with immediate placement and loading of an implant after complete decontamination of the extraction socket using lasers (Figs. 11, 12). Next, Osteo Safe was used (Fig. 13) to enable gentle trabecular expansion and placement of a self-tapping conical implant (Axiom PX® Anthogyr).

In this case, where bone recovery along the osteotomy walls was not necessary, only convex inserts were used. The palatal and subcrestal position of the implant is respected (Fig. 14). The gap between the implant and the vestibular cortical bone is not filled. Careful choice of the implant abutment enables an ideal emergence both in terms of hard tissue and soft tissue. The temporary crown is thereby shaped in such a way that it closes the gap by slightly compressing the marginal gum (Fig. 15).

It is mounted out of functional occlusion. Of course, the patient was advised to avoid voluntary chewing on this implant and only use local cleaning with cotton soaked in Chlorhexidine.

Following verification of the osseointegration (Fig. 16), the impression was made eight to 10 weeks after surgery, followed by placement of the permanent prosthesis (Fig. 17).

**Conclusion**

The implant placement technique with the use of osteotomes is not a new concept. On the other hand, using an automatic osteotome provides a better view of the site and makes it possible to practice flapless surgery, to position more precisely and obtain more homogeneous progression, in comparison to using bone taps with a surgical mallet. From the patient’s perspective, surgical comfort is significant and very noticeable.
It should be kept in mind that if you want to avoid using filling materials, tissue must be conditioned to enable its regeneration. For immediate post-extraction implant placement, lasers are of unrivalled usefulness because they enable socket decontamination and induce bone regeneration. If the basic principles of this bone regeneration are respected, the conditions are adequate enough to enable bone growth without the use of biomaterials.

These advantages are decisive during preparations such as alveolar sinus lifts as well as “split crest” where the buccal cortical bone is generally very fragile.

Vital importance is attributed to the closure of soft tissue during implant placement, either by carefully choosing the healing screw (the height and diameter) or the implant abutment, enabling slight compression of soft tissue and providing the implant/prosthetic connection system with a “barrier” that enables the regeneration of the two families of tissues.

These minimally invasive techniques still require many improvements and more widespread validation. However, for ethical and safety reasons, the practitioner should always suggest the least invasive technique that contributes to, guides and induces this tissue regeneration for which, most of the time, we have the matrix around these traumatized zones.

References are available upon request from the publisher.
STRUGGLING TO STAY AFLOAT?

FIND OUT WHY LVI IS YOUR LIFE SAVER.

Register Now For CORE I Advanced Functional Physiologic Dentistry

888.584.3237 • www.lviglobal.com • concierge@lviglobal.com

LVI GLOBAL

CHANGING DENTISTRY. CHANGING LIVES.
The synergetic effect: L-PRF and OSSEAN implant surface

Author: Robert J. Miller, MA, DDS, FACD

Clinical outcomes in implant dentistry are dependent on a host of factors that are well documented. The evolution of our discipline has involved the physical manipulation of the site and materials used but now also includes the shaping of the biologic response. Speed of healing and the quality of the tissue regenerated are now considered two of the most important attributes as it relates to surgical success. As clinical outcomes are dependent on the types of biomaterials used, one of the strategies we now employ is using the synergetic effect of a combination of these materials to ensure the best clinical outcomes.

Our capacity to shorten treatment time for patients and still achieve successful function and esthetics requires compression of the wound response. Starting 20 years ago, the initial use of autologous growth factors, in the form of platelet-rich plasma (PRP), enabled us to speed up the regeneration of soft tissue. As it had very little effect on hard tissue, researchers developed recombinant human growth factors, in the form of platelet-rich plasma (PRP), enabled us to speed up the regeneration of soft tissue. As it had very little effect on hard tissue, researchers developed recombinant human growth factors, in the form of platelet-rich plasma (PRP), enabled us to speed up the regeneration of soft tissue. As it had very little effect on hard tissue, researchers developed recombinant human growth factors, in the form of platelet-derived growth factor (PDGF) and bone morphogenetic protein (BMP) to address this inadequacy. While there was success in speeding up the process of regenerating hard tissue, the bone was relatively immature unless the clinician waited longer before placing implants.

A decade ago, a second-generation autologous material in the form of leucocyte containing platelet rich plasma (L-PRF) became available. The introduction of an FDA-cleared medical device for the production of L-PRF, IntraSpin™, has opened a new world and has enhanced healing possibilities for our patients. The entire range of growth factors necessary for regeneration of both hard and soft tissue, in concentrated form, now enables us to predictably compress treatment time while creating a tissue envelope that normally would be seen following a much longer period of healing. But if it is true that a paradigm is only as good as the weakest link, the choice of implant architecture and surface must also be considered.

One of the most exciting developments in implant surface design has been the incorporation of calcium phosphate into the titanium oxide layer in a surface treatment called OSSEAN. It is a fractal nano-rough structure and is ideal for fibrin attachment and platelet deposition. It has receptor sites that further encourage cell growth, which hastens early osseointegration. It creates a calcium-rich environment, potentiating osteoblastic cell activity by altering gene expression and produces a higher percentage of vital bone at an earlier stage of healing. This rapid bone bonding is a requirement for early loading of implants.

However, when the OSSEAN surface implants are placed in the presence of autologous biologics (L-PRF), something remarkable occurs: synergy.

Recently published advances in these two individual biotechnologies led a group of scientists to investigate just such a scenario. They reasoned that if an implant with an osteoinductive, bioactive surface (OSSEAN) was immersed into a super blood clot (L-PRF) obtained with the IntraSpin system, bone should naturally grow in an extraction site defect between the bone and implant surface, even in the...
Can this implant integrate?

(0% Bone-to-Implant Contact at Placement.)

Find out now at intra-lock.com/answer

INTRA-LOCK
DENTAL IMPLANTS

Behind the science. Ahead of the crowd.

absence of initial stability. By simultaneously activating the bony socket and implant surface, this effect was confirmed. Figures 2a–d represent some of the histological findings of this research.

In terms of treatment outcomes, what do the immediate and long-term synergetic effects of IntraSpin L-PRF and the OSSEAN implant surface mean? More predictable results with fewer complications, faster healing and the ability to load the implants sooner. In the long-term, the bond that is formed between the implant and bone is stronger and able to better withstand functional forces. These are all very positive and profound outcomes for clinicians and their patients.

References

Navident by ClaroNav

Mapping Virtual to Reality
Dynamic Navigation for Dental Implant Surgery

Reduce harm to patient
Perform flawless surgery, leading to reduced patient discomfort, reduced risk of infection, and faster recovery. Avoid unintentional iatrogenic damage to nearby anatomical structures.

Increase your efficiency
Eliminate plaster models, wax-ups and fabrication of guides. Reduce chair time by eliminating raising and suturing flaps.

Reduce treatment costs
Leverage accuracy to reduce the need for custom abutments, bone augmentation and re-work. Use retrievable screw-retained, rather than cement-retained, superstructures.

Attract referrals
Demonstrate to patients your ability to leverage the latest technology to deliver better, safer, less invasive care.
Copyright Regulations

The international C.E. magazine of implants, published by Tribune America, is printed quarterly. The magazine’s articles and illustrations are protected by copyright. Reprints of any kind, including digital mediums, without the prior consent of the publisher are inadmissible and liable to prosecution. This also applies to duplicate copies, translations, microfilms and storage and processing in electronic systems. Reproductions, including excerpts, may only be made with the permission of the publisher.

All submissions to the editorial department are understood to be the original work of the author, meaning that he or she is the sole copyright holder and no other individual(s) or publisher(s) holds the copyright to the material. The editorial department reserves the right to review all editorial submissions for factual errors and to make amendments if necessary.

Tribune America does not accept the submission of unsolicited books and manuscripts in printed or electronic form and such items will be disposed of unread should they be received.

Tribune America strives to maintain the utmost accuracy in its clinical articles. If you find a factual error or content that requires clarification, please contact Group Editor Kristine Colker at k.colker@dental-tribune.com. Opinions expressed by authors are their own and may not reflect those of Tribune America and its employees.

Tribune America cannot assume responsibility for the validity of product claims or for typographical errors. The publisher also does not assume responsibility for product names or statements made by advertisers.

The responsibility for advertisements and other specially labeled items shall not be borne by the editorial department. Likewise, no responsibility shall be assumed for information published about associations, companies and commercial markets. All cases of consequential liability arising from inaccurate or faulty representation are excluded. General terms and conditions apply, and the legal venue is New York, N.Y.
Cutting-edge design based on 45 years of experience

PRODUCT HIGHLIGHTS
- Unique thread pattern offers speedy insertion and precise control against palatal bone.
- Provides high primary stability required for extraction sites and immediate load opportunities.

Special Offer

Purchase 35 implants and receive FREE
- 1 Surgical Kit
- 1 Prosthetic Kit
- 1 Aseptico Motor with handpiece

*Offer expires 6/30/2017
WH096

For more information
888-786-2177
glidewelldental.com
multi-unit abutments
simple. flexible. smart.

full arch solutions for every scenario
Your patients are unique, shouldn’t your treatment plans be as well? The BioHorizons Multi-unit abutment system provides the tools to restore even compromised edentulous cases. With a wide variety of abutment angles, collar heights and platform diameters, no system better equips you to plan for your patients’ individual needs. The abutment’s intelligent design and restorative flexibility is matched only by its ease of use and surgical efficiency. The Multi-unit abutment system will provide your patients with secure, beautiful smiles.

For more information, contact BioHorizons
Customer Care: 888.246.8338 or shop online at www.biohorizons.com

BioHorizons®
SCIENCE • INNOVATION • SERVICE

Made in the USA